Increased vulnerability to cocaine in mice lacking dopamine D3 receptors.

نویسندگان

  • Rui Song
  • Hai-Ying Zhang
  • Xia Li
  • Guo-Hua Bi
  • Eliot L Gardner
  • Zheng-Xiong Xi
چکیده

Neuroimaging studies using positron emission tomography suggest that reduced dopamine D(2) receptor availability in the neostriatum is associated with increased vulnerability to drug addiction in humans and experimental animals. The role of D(3) receptors (D(3)Rs) in the neurobiology of addiction remains unclear, however. Here we report that D(3)R KO (D(3)(-/-)) mice display enhanced cocaine self-administration and enhanced motivation for cocaine-taking and cocaine-seeking behavior. This increased vulnerability to cocaine is accompanied by decreased dopamine response to cocaine secondary to increased basal levels of extracellular dopamine in the nucleus accumbens, suggesting a compensatory response to decreased cocaine reward in D(3)(-/-) mice. In addition, D(3)(-/-) mice also display up-regulation of dopamine transporters in the striatum, suggesting a neuroadaptative attempt to normalize elevated basal extracellular dopamine. These findings suggest that D(3)R deletion increases vulnerability to cocaine, and that reduced D(3)R availability in the brain may constitute a risk factor for the development of cocaine addiction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine D3 Receptor Mutant Mice Exhibit Increased Behavioral Sensitivity to Concurrent Stimulation of D1 and D2 Receptors

The dopamine D3 receptor is expressed primarily in regions of the brain that are thought to influence motivation and motor functions. To specify in vivo D3 receptor function, we generated mutant mice lacking this receptor. Our analysis indicates that in a novel environment, D3 mutant mice are transiently more active than wild-type mice, an effect not associated with anxiety state. Moreover, D3 ...

متن کامل

Dopamine D1 and D3 Receptors Are Differentially Involved in Cocaine-Induced Reward Learning and Cell Signaling

Memories of learned associations between the rewarding properties of drugs and environmental cues contribute significantly to craving and relapse in humans. We have investigated how dopamine (DA) D1 and D3 receptors modulate the acquisition and extinction of cocaine-induced reward learning and associated changes in cellular signaling in reward circuits in the brain. We found that D1 receptor mu...

متن کامل

Changes in extracellular dopamine induced by morphine and cocaine: crucial control by D2 receptors.

An increase of extracellular dopamine (DA) concentration is a major neurobiological substrate of the addictive properties of drugs of abuse. In this article we investigated the contribution of the DA D2 receptor (D2R) in the control of this response. Extracellular DA levels were measured in the striatum of mice lacking D2R expression (D2R-/-) by in vivo microdialysis after administration of the...

متن کامل

Role of dopamine D3 receptors in controlling the expression of cocaine sensitization in rats.

It is established that dopamine (DA) is an important brain mediator of the behavioral (i.e. sensitizing) effects of cocaine in rodents. Among DA receptors, recent findings point to engagement of DA D3 receptors in cocaine addictive actions. In the present study, we attempted to determine the role of DA D3 receptors in the expression phase of sensitization to cocaine in rats, using the selective...

متن کامل

Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors.

Repeated exposure to cocaine can induce neuroadaptations in the brain. One mechanism by which persistent changes occur involves alterations in gene expression mediated by the dopamine receptors. Both the dopamine D1 and D3 receptors have been shown to mediate gene expression changes. Moreover, the D1 and D3 receptors are also coexpressed in the same neurons, particularly in the nucleus accumben...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 43  شماره 

صفحات  -

تاریخ انتشار 2012